
  

  

I. INTRODUCTION 

High-bandwidth brain-computer interfaces (BCI) may 
benefit by decoding intention from cognitive brain areas, in 
addition to decoding movement intentions from motor areas. 
Neurons in the lateral prefrontal cortex (LPFC) encode sensory 
and cognitive signals, as well as commands for goal directed 
actions. This brain region might be a good signal source for a 
goal-selection BCI that decodes the intended goal of a motor 
action before its attempted execution. In our previous work we 
demonstrated that we could decode saccade targets from single 
realizations of pre-saccadic LPFC neuronal activity [1]. In the 
present work we decode decision outcomes independent of 
stimulus information using deep learning approaches. 

II. METHODS 

A. Data Collection 
We recorded 32-channel neuronal spiking activity from 

microelectrode arrays implanted in area 8A of the LPFC of 
two adult macaques (monkeys M and JL) (Fig 1B) while 
they made visually guided saccades to one of a pair of 
presented targets (Fig 1A). The rewarded target was 
indicated by a colour cue (Fig 1C) and we changed target 
pair and the association between colour and rewarded target 
in blocks of trials. In total, four different target pairs and 
three different colours were used. Behavioural performance 
was poor at the onset of each new cue-target rule. The 
monkeys’ performance improved rapidly as they learned the 
new rule. In this work we use a single session from each 
monkey. 

B. Signal Processing 
Data were preprocessed in Neuropype (Intheon, San Diego, 

CA). Unsorted threshold crossing events were smoothed with 
a 0.05-s Gaussian kernel and downsampled to 100 Hz. Data 
were segmented from –0.2 s to 1.5 s after target presentation. 
This segmentation scheme includes 0.2 s of fixation-only, 0.25 
s after target onset, 1.0 s after cue onset, and 0.25 s after cue 
offset until the imperative fixation-offset stimulus. Trials were 
discarded if the monkey made a saccade within 0.05 s after 
fixation offset, or if the monkey made a saccade to the non-
rewarded distractor target. The resulting neural data tensors 
were of shape N trials x 171 timestamps x 32 channels. 
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C. Machine Learning 
All models were trained and evaluated using 10-fold cross-

validation. We first used L2-regularized logistic regression on 
the full trial vectors of neural spike rates (171 x 32 time-
channel features). With 8 targets, theoretical chance accuracy 
is 12.5%, but only two targets were presented within a block. 
Baseline accuracy was thus evaluated empirically with shorter 
segments from –0.2 to 0 s and –0.2 to 0.25 s after target onset. 

We next trained a convolutional neural network (CNN) to 
infer intended target from neural data. The model architecture 
followed the EEGNet compact CNN architecture [2]. Finally, 
we trained a LSTM network to infer intended target from 
binned spikes. 

III. RESULTS 

Baseline accuracies for Monkey M and J were 28% and 
34%, respectively (Fig 1E Baseline). When the baseline data 
included target presentation (but not the instructional cue), 
accuracies were 42% and 47% (Fig 1E Target). Using 
regularized logistic regression on the full feature vectors 
including all data until the imperative cue, accuracies were 
63% and 81%. 

Using EEGNet, accuracies improved to 71% (+8% over 
logistic regression) in monkey M and 86% (+5%) in monkey 
J. Using the LSTM network, intended targets were decoded at 
accuracies of 75% (+12%) and 86% (+5%). Inspection of t-
SNE projections of input data indicated that the trial blocks 
were separable but opposing targets within a block were 
entangled. The t-SNE projection of EEGNet output indicates 
that the model learned a transformation that grouped within-
class trials that were from separate blocks and disentangled 
targets within a block. 

IV. DISCUSSION 

Most clinical trials and non-human primate studies of 
intracranial BCIs decode movement intentions from motor 
cortical areas and translate them to on-screen cursor control or 
prosthetic arm movement. A different and complementary 
approach may be to decode discrete goal-related information 
directly from cognitive areas of the brain. Here we decoded 
discrete saccade targets from single trials of neural recordings 
from monkey lateral prefrontal cortex. 
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Regularized logistic regression classified the data above 
baseline, suggesting that the neural data in the premovement 
period encoded information about the encoded target. 
Decoding accuracy was better with deep neural networks. 
Both EEGNet and the LSTM network provided better 
decoding accuracies, and for one session accuracy improved 
above the threshold for what is considered useful for a 
practical BCI [3]. 
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Figure 1. (A) Eye position and neural data were recorded while monkeys were recorded for making saccades to the correct target. (B) Neural data came 
from a 96-channel microelectrode array implanted in area 8a, near the intersection of the arcuate sulcus (AS) and the principal sulcus (PS), in each 
monkey; only 32 channels were recorded in each session. (C) Task outline for a single trial. Target pairs and colour-target associations changed within 
a block of trials. (D) t-SNE projections of spike rates and EEGNet outputs for data from monkey JL. (E) Decoder accuracies. Logistic regression was 
used for baseline and target-only periods (see text). For full trial data, logistic regression, EEGNet, and LSTM models were tested. 


